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Foreword

Whether it is called statistics, data science, machine learning, or artificial intelligence,
learning patterns from data is transforming the world. Nearly every industry imaginable
has been touched (or soon will be) by machine learning. The combined progress of both
hardware and software improvements are driving rapid advancements in the field, though it
is upon software that most people focus their attention.

While many languages are used for machine learning, including R, C/C++, Fortran,
and Go, Python has proven remarkably popular. This is in large part thanks to scikit-learn,
which makes it easy to not only train a host of different models but to also engineer
features, evaluate the model quality, and score new data. The scikit-learn project has
quickly become one of Python’s most important and powerful software libraries.

While advanced mathematical concepts underpin machine learning, it is entirely
possible to train complex models without a thorough background in calculus and matrix
algebra. For many people, getting into machine learning through programming, rather
than math, is a more attainable goal. That is precisely the goal of this book: to use Python
as a hook into machine learning and then add in some math as needed. Following in the
footsteps of R for Everyone and Pandas for Everyone, Machine Learning with Python for Everyone
strives to be open and accessible to anyone looking to learn about this exciting area of
math and computation.

Mark Fenner has spent years practicing the communication of science and machine
learning concepts to people of varying backgrounds, honing his ability to break down
complex ideas into simple components. That experience results in a form of storytelling
that explains concepts while minimizing jargon and providing concrete examples. The
book is easy to read, with many code samples so the reader can follow along on their
computer.

With more people than ever eager to understand and implement machine learning, it is
essential to have practical resources to guide them, both quickly and thoughtfully. Mark
fills that need with this insightful and engaging text. Machine Learning with Python for
Everyone lives up to its name, allowing people with all manner of previous training to
quickly improve their machine learning knowledge and skills, greatly increasing access to
this important field.

Jared Lander,
Series Editor
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Preface

In 1983, the movie WarGames came out. I was a preteen and I was absolutely engrossed:
by the possibility of a nuclear apocalypse, by the almost magical way the lead character
interacted with computer systems, but mostly by the potential of machines that could learn.
I spent years studying the strategic nuclear arsenals of the East and the West—fortunately
with a naivete of a tweener—but it was almost ten years before I took my first serious
steps in computer programming. Teaching a computer to do a set process was amazing.
Learning the intricacies of complex systems and bending them around my curiosity was a
great experience. Still, I had a large step forward to take. A few short years later, I worked
with my first program that was explicitly designed to learn. I was blown away and I knew
I found my intellectual home. I want to share the world of computer programs that learn
with you.

Audience

Who do I think you are? I've written Machine Learning with Python for Everyone for the
absolute beginner to machine learning. Even more so, you may well have very little
college-level mathematics in your toolbox and I'm not going to try to change that. While
many machine learning books are very heavy on mathematical concepts and equations,
I've done my best to minimize the amount of mathematical luggage you’ll have to carry. I
do expect, given the book’s title, that you’ll have some basic proficiency in Python. If you
can read Python, you’ll be able to get a lot more out of our discussions. While many books
on machine learning rely on mathematics, I'm relying on stories, pictures, and Python
code to communicate with you. There will be the occasional equation. Largely, these can
be skipped if you are so inclined. But, if I've done my job well, I'll have given you enough
context around the equation to maybe—just maybe—understand what it is trying to say.

Why might you have this book in your hand? The least common denominator is that
all of my readers want to learn about machine learning. Now, you might be coming from
very different backgrounds: a student in an introductory computing class focused on
machine learning, a mid-career business analyst who all of sudden has been thrust beyond
the limits of spreadsheet analysis, a tech hobbyist looking to expand her interests, or a
scientist needing to analyze data in a new way. Machine learning is permeating society.
Depending on your background, Machine Learning with Python for Everyone has different
things to offer you. Even a mathematically sophisticated reader who is looking to do a
break-in to machine learning using Python can get a lot out of this book.

So, my goal is to take someone with an interest or need to do some machine learning
and teach them the process and the most important concepts of machine learning in a
concrete way using the Python scikit-learn library and some of its friends. You’ll come
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away with overall patterns, strategies, pitfalls, and gotchas that will be applicable in every
learning system you ever study, build, or use.

Approach

Many books that try to explain mathematical topics, such as machine learning, do so by
presenting equations as if they tell a story to the uninitiated. I think that leaves many of
us—even those of us who like mathematics!—stuck. Personally, I build a far better mental
picture of the process of machine learning by combining visual and verbal descriptions
with running code. 'm a computer scientist at heart and by training. I love building things.
Building things is how I know that I've reached a level where I really understand them.
You might be familiar with the phrase, “If you really want to know something, teach it to
someone.” Well, there’s a follow-on. “If you really want to know something, teach a
computer to do it!” That’s my take on how I'm going to teach you machine learning.
With minimal mathematics, I want to give you the concepts behind the most important
and frequently used machine learning tools and techniques. Then, I want you to
immediately see how to make a computer do it. One note: we won't be programming
these methods from scratch. We’'ll be standing on the shoulders of giants and using some
very powerful, time-saving, prebuilt software libraries (more on that shortly).

We won'’t be covering all of these libraries in great detail—there is simply too much
material to do that. Instead, we are going to be practical. We are going to use the best tool
for the job. I'll explain enough to orient you in the concept we’re using—and then we’ll
get to using it. For our mathematically inclined colleagues, I'll give pointers to more
in-depth references they can pursue. I'll save most of this for end-of-the-chapter notes so
the rest of us can skip it easily.

If you are flipping through this introduction, deciding if you want to invest time in this
book, I want to give you some insight into things that are out-of-scope for us. We aren’t
going to dive into mathematical proofs or rely on mathematics to explain things. There are
many books out there that follow that path and I'll give pointers to my favorites at the ends
of the chapters. Likewise, I'm going to assume that you are fluent in basic- to intermediate-
level Python programming. However, for more advanced Python topics—and things that
show up from third-party packages like NumPy or Pandas—TI'll explain enough of what’s
going on so that you can understand each technique and its context.

Overview

In Part I, we establish a foundation. I'll give you some verbal and conceptual
introductions to machine learning in Chapter 1. In Chapter 2 we introduce and take a
slightly different approach to some mathematical and computational topics that show up
repeatedly in machine learning. Chapters 3 and 4 walk you through your first steps in
building, training, and evaluating learning systems that classify examples (classifiers) and
quantify examples (regressors).

Part II shifts our focus to the most important aspect of applied machine learning
systems: evaluating the success of our system in a realistic way. Chapter 5 talks about general
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evaluation techniques that will apply to all of our learning systems. Chapters 6 and 7 take
those general techniques and add evaluation capabilities for classifiers and regressors.

Part III broadens our toolbox of learning techniques and fills out the components of a
practical learning system. Chapters 8 and 9 give us additional classification and regression
techniques. Chapter 10 describes feature engineering: how we smooth the edges of rough
data into forms that we can use for learning. Chapter 11 shows how to chain multiple steps
together as a single learner and how to tune a learner’s inner workings for better
performance.

Part IV takes us beyond the basics and discusses more recent techniques that are
driving machine learning forward. We look at learners that are made up of multiple little
learners in Chapter 12. Chapter 13 discusses learning techniques that incorporate
automated feature engineering. Chapter 14 is a wonderful capstone because it takes the
techniques we describe throughout the book and applies them to two particularly
interesting types of data: images and text. Chapter 15 both reviews many of the techniques
we discuss and shows how they relate to more advanced learning architectures—neural
networks and graphical models.

Our main focus is on the techniques of machine learning. We will investigate a number
of learning algorithms and other processing methods along the way. However,
completeness is not our goal. We’ll discuss the most common techniques and only glance
briefly at the two large subareas of machine learning: graphical models and neural, or deep,
networks. However, we will see how the techniques we focus on relate to these more
advanced methods.

Another topic we won'’t cover is implementing specific learning algorithms. We’ll build
on top of the algorithms that are already available in scikit-learn and friends; we’ll create
larger solutions using them as components. Still, someone has to implement the gears and
cogs inside the black-box we funnel data into. If you are really interested in implementation
aspects, you are in good company: I love them! Have all your friends buy a copy of this
book, so I can argue I need to write a follow-up that dives into these lower-level details.
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1

Let’s Discuss Learning

1.1 Welcome

From time to time, people trot out a tired claim that computers can “only do what they
are told to do.” The claim is taken to mean that computers can only do what their
programmers know how to do and can explain to the computer. This claim is false.
Computers can perform tasks that their programmers cannot explain to them. Computers
can solve tasks that their programmers do not understand. We will break down this
paradox with an example of a computer program that learns.

I’ll start by discussing one of the oldest—if not the oldest known—examples of a
programmed machine-learning system. I've turned this into a story, but it is rooted in
historical facts. Arthur Samuel was working for IBM in the 1950s and he had an interesting
problem. He had to test the big computing machines that were coming off the assembly
line to make sure transistors didn’t blow up when you turned a machine on and ran a
program— people don’t like smoke in their workplace. Now, Samuel quickly got bored
with running simple toy programs and, like many computing enthusiasts, he turned his
attention towards games. He built a computer program that let him play checkers against
himself. That was fun for a while: he tested IBM’s computers by playing checkers. But, as
is often the case, he got bored playing two-person games solo. His mind began to consider
the possibility of getting a good game of checkers against a computer opponent. Problem was,
he wasn’t good enough at checkers to explain good checkers strategies to a computer!

Samuel came up with the idea of having the computer learn how to play checkers. He
set up scenarios where the computer could make moves and evaluate the costs and benefits
of those moves. At first, the computer was bad, very bad. But eventually, the program
started making progress. It was slow going. Suddenly, Samuel had a great two-for-one idea:
he decided to let one computer play another and take himself out of the loop. Because the
computers could make moves much faster than Samuel could enter his moves—Iet alone
think about them—the result was many more cycles of “make a move and evaluate the
outcome” per minute and hour and day.

Here is the amazing part. It didn’t take very long for the computer opponent to be
able to consistently beat Samuel. The computer became a better checkers player than its
programmer! How on earth could this happen, if “computers can only do what they are told
to do”? The answer to this riddle comes when we analyze what the computer was told to
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do. What Samuel told the computer to do was not the play-checkers task; it was the
learn-to-play-checkers task. Yes, we just went all meta on you. Meta is what happens when
you take a picture of someone taking a picture (of someone else). Meta is what happens
when a sentence refers to itself; the next sentence is an example. This sentence has five
words. When we access the meta level, we step outside the box we were playing in and we
get an entirely new perspective on the world. Learning to play checkers—a task that develops
skill at another task—is a meta task. It lets us move beyond a limiting interpretation of’
the statement, computers can only do what they are told. Computers do what they are told, but
they can be told to develop a capability. Computers can be told to learn.

1.2 Scope, Terminology, Prediction,
and Data

There are many kinds of computational learning systems out there. The academic field
that studies these systems is called machine learning. Our journey will focus on the current
wunderkind of learning systems that has risen to great prominence: learning from examples.
Even more specifically, we will mostly be concerned with supervised learning from examples.
What is that? Here’s an example. I start by giving you several photos of two animals you’ve
never seen before—with apologies to Dr. Seuss, they might be a Lorax or a Who—and
then I tell you which animal is in which photo. If I give you a new, unseen photo you
might be able to tell me the type of animal in it. Congratulations, you’re doing great! You
just performed supervised learning from examples. When a computer is coaxed to learn
from examples, the examples are presented a certain way. Each example is measured
on a common group of attributes and we record the values for each attribute on each
example. Huh?

Imagine—or glance at Figure 1.1—a cartoon character running around with a
basket of different measuring sticks which, when held up to an object, return some
characteristic of that object, such as this vehicle has four wheels, this person has brown hair, the
temperature of that tea is 180°F, and so on ad nauseam (that’s an archaic way of saying until
you’re sick of my examples).

N S el

Figure 1.1 Humans have an insatiable desire to measure all sorts of things.
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1.2.1 Features

Let’s get a bit more concrete. For example—a meta-example, if you will—a dataset
focused on human medical records might record several relevant values for each patient,
such as height, weight, sex, age, smoking history, systolic and diastolic (that’s the high and
low numbers) blood pressures, and resting heart rate. The different people represented in
the dataset are our examples. The biometric and demographic characteristics are our
attributes.

We can capture this data very conveniently as in Table 1.1.

Table 1.1 Asimple biomedical data table. Each row is an example. Each column
contains values for a given attribute. Together, each attribute-value pair is a feature of an
example.

patientid height weight sex age smoker hr sysbp diabp

007 52" 120 M 11 no 75 120 80
2139 5'4” 140 F 41 no 65 115 75
1111 511" 185 M 41 no 52 125 75

Notice that each example—each row—is measured on the same attributes shown in
the header row. The values of each attribute run down the respective columns.

We call the rows of the table the examples of the dataset and we refer to the columns as
the features. Features are the measurements or values of our attributes. Often, people use
“features” and “attributes” as synonyms describing the same thing; what they are referring
to are the column of values. Still, some people like to distinguish among three concepts:
what-is-measured, what-the-value-is, and what-the-measured-value-is. For those strict folks, the
first is an attribute, the second is a value, and the last is a feature—an attribute and a value
paired together. Again, we’ll mostly follow the typical conversational usage and call the
columns features. If we are specifically talking about what-is-measured, we’ll stick with the
term attribute. You will inevitably see both, used both ways, when you read about machine
learning.

Let’s take a moment and look at the types of values our attributes—what is
measured—-can take. One type of value distinguishes between different groups of people.
‘We might see such groups in a census or an epidemiological medical study—for
example, sex {male, female} or a broad record of ethnic-cultural-genetic heritage
{ Aftican, Asian, European, Native American, Polynesian}. Attributes like these are called
discrete, symbolic, categorical, or nominal attributes, but we are not going to stress about
those names. If you struggled with those in a social science class, you are free to give a
hearty huzzah.

Here are two important, or at least practical, points about categorical data. One point
is that these values are discrete. They take a small, limited number of possibilities that
typically represent one of several options. You're right that small and several are relative
terms—just go with it. The second point is that the information in those attributes can be
recorded in two distinct ways:
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m  As asingle feature that takes one value for each option, or
m  As several features, one per option, where one, and only one, of those features is
marked as yes or true and the remainder are marked as no or false.

Here’s an example. Consider

Name Sex

Mark Male
Barb Female
Ethan Male

versus:

Name Sexis Female Sexis Male

Mark No Yes
Barb Yes No
Ethan No Yes

If we had a column for community type in a census, the values might be Urban, Rural,
and Suburban with three possible values. If we had the expanded, multicolumn form, it
would take up three columns. Generally, we aren’t motivated or worried about table size
here. What matters is that some learning methods are, shall we say, particular in preferring
one form or the other. There are other details to point out, but we’ll save them for later.

Some feature values can be recorded and operated on as numbers. We may lump them
together under the term numerical features. In other contexts, they are known as continuous
or, depending on other details, interval or ratio values. Values for attributes like height and
weight are typically recorded as decimal numbers. Values for attributes like age and blood
pressure are often recorded as whole numbers. Values like counts—say, how many wheels
are on a vehicle—are strictly whole numbers. Conveniently, we can perform arithmetic
(+, —, X, /) on these. While we can record categorical data as numbers, we can’t
necessarily perform meaningful numerical calculations directly on those values. If two
states—say, Pennsylvania and Vermont—are coded as 2 and 14, it probably makes no
sense to perform arithmetic on those values. There is an exception: if, by design, those
values mean something beyond a unique identifier, we might be able to do some or all of
the maths. For extra credit, you can find some meaning in the state values I used where
mathematics would make sense.

1.2.2 Target Values and Predictions

Let’s shift our focus back to the list of biomedical attributes we gathered. As a reminder,
the column headings were height, weight, sex, age, smoker, heart rate, systolic blood
pressure, and diastolic blood pressure. These attributes might be useful data for a health
care provider trying to assess the likelihood of a patient developing cardiovascular heart. To
do so, we would need another piece of information: did these folks develop heart disease?



Putting the Machine in Machine Learning

If we have that information, we can add it to the list of attributes. We could capture and
record the idea of “developing heart disease” in several different ways. Did the patient:

® Develop any heart disease within ten years: yes/no

m Develop X-level severity heart disease within ten years: None or Grade I, II, III

m Show some level of a specific indicator for heart disease within ten years: percent of
coronary artery blockage

We could tinker with these questions based on resources at our disposal, medically
relevant knowledge, and the medical or scientific puzzles we want to solve. Time is a
precious resource; we might not have ten years to wait for an outcome. There might be
medical knowledge about what percent of blockage is a critical amount. We could modify
the time horizon or come up with different attributes to record.

In any case, we can pick a concrete, measurable target and ask, “Can we find a
predictive relationship between the attributes we have foday and the outcome that we will
see at some future time?” We are literally trying to predict the future—maybe ten years from
now—rfrom things we know today. We call the concrete outcome our farget feature or
simply our farget. If our target is a category like {sick, healthy} or {None, I, II, III}, we call
the process of learning the relationship classification. Here, we are using the term
classification in the sense of finding the different classes, or categories, of a possible
outcome. If the target is a smooth sweeping of numerical values, like the usual decimal
numbers from elementary school {27.2,42.0,3.14159, —117.6}, we call the process
regression. 1f you want to know why, go and google Galton regression for the history lesson.

We now have some handy terminology in our toolbox: most importantly features, both
either categorical or numerical, and a target. If we want to emphasize the features being used
to predict the future unknown outcome, we may call them input features or predictive
features. There are a few issues I've swept under the carpet. In particular, we’ll address some
alternative terminology at the end of the chapter.

1.3 Putting the Machine in Machine
Learning

I want you to create a mental image of a factory machine. If you need help, glance at
Figure 1.2. On the left-hand side, there is a conveyor belt that feeds inputs into the
machine. On the right-hand side, the machine spits out outputs which are words or
numbers. The words might be cat or dog. The numbers might be {0, 1} or {—2.1,3.7}.
The machine itself is a big hulking box of metal. We can’t really see what happens on the
inside. But we can see a control panel on the side of the machine, with an operator’s seat in
front of it. The control panel has some knobs we can set to numerical values and some
switches we can flip on and off. By adjusting the knobs and switches, we can make
different products appear on the right-hand side of the machine, depending on what came
in the left-hand side. Lastly, there is a small side tray beside the operator’s chair. The tray
can be used to feed additional information, that is not easily captured by knobs and
switches, into the machine. Two quick notes for the skeptical reader: our knobs can get us
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Figure 1.2 Descriptions go in. Categories or other values come out. We can adjust
the machine to improve the relationship between the inputs and outputs.

arbitrarily small and large values (—o0 to 00, if you insist) and we don'’t strictly need on/off
switches, since knobs set to precisely 0 or 1 could serve a similar purpose.

Moving forward, this factory image is a great entry point to understand how learning
algorithms figure out relationships between features and a target. We can sit down as the
machine operator and press a magic—probably green—go button. Materials roll in
the machine from the left and something pops out on the right. Our curiosity gets the best
of us and we twiddle the dials and flip the switches. Then, different things pop out the
right-hand side. We turn up KnobOne and the machine pays more attention to the sounds
that the input object makes. We turn down KnobTwo and the machine pays less attention
to the number of limbs on the input object. If we have a goal—if there is some known
product we’d like to see the machine produce—hopefully our knob twiddling gets us
closer to it.

Learning algorithms are formal rules for how we manipulate our controls. After seeing
examples where the target is known, learning algorithms take a given big-black-box and
use a well-defined method to set the dials and switches to good values. While good can be
quite a debatable quality in an ethics class, here we have a gold standard: our known target
values. If they don’t match, we have a problem. The algorithm adjusts the control panel
settings so our predicted outs match the known outs. Our name for the machine is a learning
model or just a model.

An example goes into the machine and, based on the settings of the knobs and
switches, a class or a numerical value pops out. Do you want a different output value from
the same input ingredients? Turn the knobs to different settings or flip a switch. One
machine has a fixed set of knobs and switches. The knobs can be turned, but we can’t add
new knobs. If we add a knob, we have a different machine. Amazingly, the differences
between knob-based learning methods boil down to answering three questions:

1. What knobs and switches are there: what is on the control panel?
2. How do the knobs and switches interact with an input example: what are the inner
workings of the machine?
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3. How do we set the knobs from some known data: how do we align the inputs with
the outputs we want to see?

Many learning models that we will discuss can be described as machines with knobs
and switches—with no need for the additional side input tray. Other methods require the
side tray. We’ll hold off discussing that more thoroughly, but if your curiosity is getting
the best of you, flip to the discussion of nearest neighbors in Section 3.5.

Each learning method—which we imagine as a black-box factory machine and a way
to set knobs on that machine—is really an implementation of an algorithm. For our purposes,
an algorithm is a finite, well-defined sequence of steps to solve a task. An implementation
of an algorithm is the specification of those steps in a particular programming language.
The algorithm is the abstract idea; the implementation is the concrete existence of that
idea—at least, as concrete as a computer program can be! In reality, algorithms can also be
implemented in hardware—just like our factory machines; it’s far easier for us to work
with software.

1.4 Examples of Learning Systems

Under the umbrella of supervised learning from examples, there is a major distinction
between two things: predicting values and predicting categories. Are we trying (1) to relate
the inputs to one of a few possible categories indicated by discrete symbols, or (2) to

relate the inputs to a more-or-less continuous range of numerical values? In short, is the
target categorical or numerical? As I mentioned, predicting a category is called classification.
Predicting a numerical value is called regression. Let’s explore examples of each.

1.4.1 Predicting Categories: Examples of Classifiers

Classifiers are models that take input examples and produce an output that is one of a small
number of possible groups or classes:

1. Image Classification. From an input image, output the animal (e.g., cat, dog,
zebra) that is in the image, or none if there is no animal present. Image analysis of
this sort 1s at the intersection of machine learning and computer vision. Here, our
inputs will be a large collection of image files. They might be in different formats
(png, jpeg, etc.). There may be substantial differences between the images: (1) they
might be at different scales, (2) the animals may be centered or cut-off on the edges
of the frame, and (3) the animals might be blocked by other things (e.g., a tree).
These all represent challenges for a learning system—and for learning researchers!
But, there are some nice aspects to image recognition. Our concept of cat and what
images constitute a cat is fairly fixed. Yes, there could be blurred boundaries with
animated cats—Hobbes, Garfield, Heathcliff, I'm looking at you—nbut short of
evolutionary time scales, cat is a pretty static concept. We don’t have a moving target:
the relationship between the images and our concept of cat is fixed over time.



