ADDISON WESLEY DATA & ANALYTICS SERIES

MACHINE

LEARNING

WITH PYTHON
FOR EVERYONE

MARK E. FENNER

Machine Learning
with Python
for Everyone

The Pearson Addison-Wesley

Data & Analytics Series

. livelessons®

Visual Data

Storytelling Hadoop
and Spark
Fundamentals

livelessons®

Deep ;
Learning with P
TensorFlow Jeellekt
Everyone

Pythes Data Analysis

Third Edition

Jon Krohn B Douglas Eadline

video JF—— Vile [=Ye}

Visit informit.com/awdataseries for a complete list of available publications.

he Pearson Addison-Wesley Data & Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data
2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

Oae D

Make sure to connect with us!
informit.com/socialconnect

@ Pearson =
Addison-Wesley !I‘“(?(r!“l!}cgom Safari

http://informit.com/awdataseries
http://informit.com/socialconnect
http://informit.com/

Machine Learnin
with Python
for Everyone

Mark E. Fenner

vvAddison-Wesley

Boston @ Columbus @ New York @ San Francisco ® Amsterdam @ Cape Town
Dubai @ London e Madrid e Milan @ Munich e Paris @ Montreal ® Toronto @ Delhi @ Mexico City
Sio Paulo @ Sydney @ Hong Kong e Seoul @ Singapore ® Taipei ® Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019938761

Copyright © 2020 Pearson Education, Inc.

Cover image: cono0430/Shutterstock

Pages 58, 87: Screenshot of seaborn © 2012-2018 Michael Waskom.

Pages 167, 177, 192, 201, 278, 284, 479, 493: Screenshot of seaborn heatmap © 2012-2018 Michael
Waskom.

Pages 178, 185, 196, 197, 327, 328: Screenshot of seaborn swarmplot © 2012-2018 Michael Waskom.

Page 222: Screenshot of seaborn stripplot © 2012-2018 Michael Waskom.

Pages 351, 354: Screenshot of seaborn implot © 2012-2018 Michael Waskom.

Pages 352, 353, 355: Screenshot of seaborn distplot © 2012-2018 Michael Waskom.

Pages 460, 461: Screenshot of Manifold © 2007-2018, scikit-learn developers.

Page 480: Screenshot of cluster © 2007-2018, scikit-learn developers.

Pages 483, 484, 485: Image of accordion, Vereshchagin Dmitry/Shutterstock.

Page 485: Image of fighter jet, 3dgenerator/123RE

Page 525: Screenshot of seaborn jointplot © 2012-2018 Michael Waskom.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-484562-3
ISBN-10: 0-13-484562-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To my son, Ethan—
with the eternal hope of a better tomorrow

This page intentionally left blank

Contents

Foreword xxi

Preface xxiii

About the Author xxvii

I FirstSteps 1

1 Let’s Discuss Learning 3

2

11
1.2

1.3

1.4

1.5

1.6

1.7
1.8

Welcome 3

Scope, Terminology, Prediction,
and Data 4

1.2.1 Features 5

1.2.2 Target Values and
Predictions 6

Putting the Machine in Machine
Learning 7

Examples of Learning Systems 9

1.4.1 Predicting Categories: Examples of
Classifiers 9

1.4.2 Predicting Values: Examples of
Regressors 10

Evaluating Learning Systems 11
1.5.1 Correctness 11
1.5.2 Resource Consumption 12

A Process for Building Learning
Systems 13

Assumptions and Reality of Learning 15
End-of-Chapter Material 17

1.8.1 The Road Ahead 17

1.8.2 Notes 17

Some Technical Background 19

21
2.2

About Our Setup 19
The Need for Mathematical Language 19

viii

Contents

2.3

2.4

25

2.6

2.7
2.8

2.9

2.10
211

Our Software for Tackling Machine
Learning 20

Probability 21

24.1 Primitive Events 22

2.4.2 Independence 23

2.4.3 Conditional Probability 24
244 Distributions 25

Linear Combinations, Weighted Sums,
and Dot Products 28

25.1 Weighted Average 30
2.5.2 Sums of Squares 32
2.5.3 Sum of Squared Errors 33

A Geometric View: Points in
Space 34

2.6.1 Lines 34
2.6.2 Beyond Lines 39
Notation and the Plus-One Trick 43

Getting Groovy, Breaking the
Straight-Jacket, and Nonlinearity 45

NumPy versus “All the Maths” 47
2.9.1 Back to 1D versus 2D 49
Floating-Point Issues 52

EOC 53

2.11.1 Summary 53

2.11.2 Notes 54

Predicting Categories: Getting Started
with Classification 55

3.1
3.2
3.3

3.4
3.5

Classification Tasks 55
A Simple Classification Dataset 56

Training and Testing: Don’t Teach
tothe Test 59

Evaluation: Grading the Exam 62

Simple Classifier #1.:
Nearest Neighbors, Long Distance
Relationships, and Assumptions 63

3.5.1 Defining Similarity 63
3.5.2 The kin k-NN 64
3.5.3 Answer Combination 64

3.6

3.7

3.8

Contents

3.5.4 k-NN, Parameters, and
Nonparametric Methods 65

3.5.5 Building a k-NN Classification
Model 66

Simple Classifier #2: Naive Bayes,
Probability, and Broken Promises 68

Simplistic Evaluation of Classifiers 70
3.7.1 Learning Performance 70

3.7.2 Resource Utilization in
Classification 71

3.7.3 Stand-Alone Resource
Evaluation 77

EOC 81

3.8.1 Sophomore Warning: Limitations
and Open Issues 81

3.8.2 Summary 82
3.8.3 Notes 82
3.8.4 Exercises 83

Predicting Numerical Values: Getting Started
with Regression 85

4.1
4.2

4.3

4.4

A Simple Regression Dataset 85

Nearest-Neighbors Regression and Summary
Statistics 87

421 Measures of Center: Median and

Mean 88
4.2.2 Building a k-NN Regression
Model 90

Linear Regression and Errors 91

4.3.1 No Flat Earth: Why We Need
Slope 92

4.3.2 Tilting the Field 94

4.3.3 Performing Linear
Regression 97

Optimization: Picking the Best Answer 98
441 Random Guess 98

4.4.2 Random Step 99

4.4.3 Smart Step 99

4.4.4 Calculated Shortcuts 100

ix

Contents

4.5

4.6

4.45 Application to Linear
Regression 101

Simple Evaluation and Comparison
of Regressors 101

45.1 Root Mean Squared
Error 101

4.5.2 Learning Performance 102

45.3 Resource Utilization in
Regression 102

EOC 104

4.6.1 Limitations and Open
Issues 104

4.6.2 Summary 105
4.6.3 Notes 105
4.6.4 Exercises 105

Il Evaluation 107

5 Evaluating and Comparing Learners 109

5.1
5.2

5.3

5.4

Evaluation and Why Less Is More 109
Terminology for Learning Phases 110
5.2.1 Back to the Machines 110

5.2.2 More Technically
Speaking ... 113

Major Tom, There’s Something Wrong;:

Overfitting and Underfitting 116

5.3.1 Synthetic Data and Linear
Regression 117

5.3.2 Manually Manipulating Model
Complexity 118

5.3.3 Goldilocks: Visualizing
Overfitting, Underfitting, and
“Just Right” 120

5.3.4 Simplicity 124

5.3.5 Take-Home Notes on
Overfitting 124

From Errors to Costs 125

5.4.1 Loss 125

5.4.2 Cost 126

5.5

5.6

5.7

5.8

5.9

Contents

5.4.3 Score 127

(Re)Sampling: Making More from Less 128
5.5.1 Cross-Validation 128

5.5.2 Stratification 132

5.5.3 Repeated Train-Test Splits 133
55.4 A Better Way and Shuffling 137

5.5.5 Leave-One-Out
Cross-Validation 140

Break-It-Down: Deconstructing Error into Bias
and Variance 142

5.6.1 Variance of the Data 143
5.6.2 Variance of the Model 144
5.6.3 Bias of the Model 144
5.6.4 All Together Now 145

5.6.5 Examples of Bias-Variance
Tradeoffs 145

Graphical Evaluation and Comparison 149

5.7.1 Learning Curves: How Much Data
Do We Need? 150

5.7.2 Complexity Curves 152

Comparing Learners with
Cross-Validation 154

EOC 155

5.9.1 Summary 155
5.9.2 Notes 155
5.9.3 Exercises 157

Evaluating Classifiers 159

6.1
6.2

Baseline Classifiers 159

Beyond Accuracy: Metrics
for Classification 161

6.2.1 Eliminating Confusion from the
Confusion Matrix 163

6.2.2 Ways of Being Wrong 164

6.2.3 Metrics from the Confusion
Matrix 165

6.2.4 Coding the Confusion Matrix 166

6.2.5 Dealing with Multiple Classes:
Multiclass Averaging 168

Xi

Xil

Contents

6.2.6 Fi 170

6.3 ROC Curves 170
6.3.1 Patterns in the ROC 173
6.3.2 Binary ROC 174

6.3.3 AUC: Area-Under-the-(ROC)-
Curve 177

6.3.4 Multiclass Learners,
One-versus-Rest, and
ROC 179

6.4 Another Take on Multiclass:
One-versus-One 181

6.4.1 Multiclass AUC Part Two: The
Quest for a Single
Value 182

6.5 Precision-Recall Curves 185

6.5.1 A Note on Precision-Recall
Tradeoff 185

6.5.2 Constructing a
Precision-Recall Curve 186

6.6 Cumulative Response and Lift
Curves 187

6.7 More Sophisticated Evaluation
of Classifiers: Take Two 190

6.7.1 Binary 190

6.7.2 A Novel Multiclass
Problem 195

6.8 EOC 201
6.8.1 Summary 201
6.8.2 Notes 202
6.8.3 Exercises 203

Evaluating Regressors 205
7.1 Baseline Regressors 205

7.2 Additional Measures for
Regression 207

7.2.1 Creating Our Own Evaluation
Metric 207

7.2.2 Other Built-in Regression
Metrics 208

7.2.3 R% 209

7.3

7.4
7.5

7.6

Contents

Residual Plots 214

7.3.1 Error Plots 215

7.3.2 Residual Plots 217

A First Look at Standardization 221

Evaluating Regressors in a More
Sophisticated Way: Take Two 225

7.5.1 Cross-Validated Results on
Multiple Metrics 226

7.5.2 Summarizing Cross-Validated
Results 230

7.5.3 Residuals 230
EOC 232

7.6.1 Summary 232
7.6.2 Notes 232
7.6.3 Exercises 234

Il More Methods and Fundamentals 235

8 More Classification Methods 237

8.1
8.2

8.3

8.4

Revisiting Classification 237

Decision Trees 239

8.2.1 Tree-Building Algorithms 242
8.2.2 Let’s Go: Decision Tree Time 245

8.2.3 Bias and Variance in Decision
Trees 249

Support Vector Classifiers 249

8.3.1 Performing SVC 253

8.3.2 Bias and Variance in SVCs 256

Logistic Regression 259

8.4.1 Betting Odds 259

8.4.2 Probabilities, Odds, and
Log-Odds 262

8.4.3 Just Do It: Logistic Regression
Edition 267

8.4.4 A Logistic Regression: A Space
Oddity 268

Xiii

Xiv Contents

8.5 Discriminant Analysis 269
8.5.1 Covariance 270
8.5.2 The Methods 282
8.5.3 Performing DA 283

8.6 Assumptions, Biases, and
Classifiers 285

8.7 Comparison of Classifiers: Take
Three 287

8.7.1 Digits 287
8.8 EOC 290

8.8.1 Summary 290

8.8.2 Notes 290

8.8.3 Exercises 293

9 More Regression Methods 295

9.1 Linear Regression in the Penalty Box:
Regularization 295

9.1.1 Performing Regularized
Regression 300

9.2 Support Vector Regression 301
9.2.1 Hinge Loss 301

9.2.2 From Linear Regression to
Regularized Regression to
Support Vector
Regression 305

9.2.3 Just Do It—SVR Style 307
9.3 Piecewise Constant Regression 308

9.3.1 Implementing a Piecewise
Constant Regressor 310

9.3.2 General Notes on
Implementing Models 311

9.4 Regression Trees 313

94.1 Performing Regression with
Trees 313

9.5 Comparison of Regressors: Take
Three 314

9.6 EOC 318
9.6.1 Summary 318
9.6.2 Notes 318
9.6.3 Exercises 319

Contents

10 Manual Feature Engineering: Manipulating
Data for Fun and Profit 321

10.1

10.2

10.3
10.4
10.5

10.6

10.7

10.8

Feature Engineering Terminology and
Motivation 321

10.1.1 Why Engineer Features? 322

10.1.2 When Does Engineering
Happen? 323

10.1.3 How Does Feature Engineering
Occur? 324

Feature Selection and Data Reduction:
Taking out the Trash 324

Feature Scaling 325
Discretization 329
Categorical Coding 332

10.5.1 Another Way to Code and the
Curious Case of the Missing
Intercept 334

Relationships and Interactions 341
10.6.1 Manual Feature Construction 341
10.6.2 Interactions 343

10.6.3 Adding Features with
Transformers 348

Target Manipulations 350

10.7.1 Manipulating the Input
Space 351

10.7.2 Manipulating the Target 353
EOC 356

10.8.14 Summary 356

10.8.2 Notes 356

10.8.3 Exercises 357

11 Tuning Hyperparameters and Pipelines 359

11.1
11.2

Models, Parameters, Hyperparameters 360
Tuning Hyperparameters 362
11.2.14 A Note on Computer Science and
Learning Terminology 362
11.2.2 An Example of Complete
Search 362
11.2.3 Using Randomness to Search for a
Needle in a Haystack 368

XV

XVi

Contents

11.3 Down the Recursive Rabbit Hole:
Nested Cross-Validation 370

11.3.1 Cross-Validation, Redux 370

11.3.2 GridSearch as a Model
11.3.3 Cross-Validation Nested

371

within Cross-Validation 372

11.3.4 Comments on Nested

Cv 375
11.4 Pipelines 377

11.4.1 A Simple Pipeline 378
11.4.2 A More Complex

Pipeline 379

11.5 Pipelines and Tuning Together 380

11.6 EOC 382
11.6.1 Summary 382
11.6.2 Notes 382
11.6.3 Exercises 383

IV Adding Complexity 385
12 Combining Learners 387

12.14 Ensembles 387
12.2 Voting Ensembles 389

12.3 Bagging and Random Forests 390

12.3.1 Bootstrapping 390
12.3.2 From Bootstrapping to

Bagging 394

12.3.3 Through the Random

Forest 396
12.4 Boosting 398

12.4.1 Boosting Details 399
12.5 Comparing the Tree-Ensemble

Methods 401

12.6 EOC 405
12.6.1 Summary 405
12.6.2 Notes 405
12.6.3 Exercises 406

Contents

13 Models That Engineer Features for Us 409

13.1

13.2

13.3

13.4

Feature Selection 411

13.1.1 Single-Step Filtering with
Metric-Based Feature
Selection 412

13.1.2 Model-Based Feature
Selection 423

13.1.3 Integrating Feature Selection with
a Learning Pipeline 426

Feature Construction with Kernels 428
13.2.1 A Kernel Motivator 428
13.2.2 Manual Kernel Methods 433

13.2.3 Kernel Methods and Kernel
Options 438

13.2.4 Kernelized SVCs: SVMs 442

13.2.5 Take-Home Notes on SVM and an
Example 443

Principal Components Analysis:
An Unsupervised Technique 445

13.3.1 A Warm Up: Centering 445
13.3.2 Finding a Different Best Line 448
13.3.3 AFirst PCA 449

13.3.4 Under the Hood of PCA 452

13.3.5 A Finale: Comments on General
PCA 457

13.3.6 Kernel PCA and Manifold
Methods 458

EOC 462

13.4.1 Summary 462
13.4.2 Notes 462
13.4.3 Exercises 467

14 Feature Engineering for Domains:
Domain-Specific Learning 469

14.1

14.2

Working with Text 470

14.1.1 Encoding Text 471

14.1.2 Example of Text Learning 476
Clustering 479

14.2.1 k-Means Clustering 479

Xvii

Xviii

Contents

14.3

14.4

Working with Images 481

14.3.1 Bag of Visual Words 481
14.3.2 OurImage Data 482
14.3.3 An End-to-End System 483

14.3.4 Complete Code of BoVW
Transformer 491

EOC 493

14.4.1 Summary 493
14.4.2 Notes 494
14.4.3 Exercises 495

15 Connections, Extensions, and Further
Directions 497

15.1
15.2

15.3

15.4
15.5

15.6

Optimization 497

Linear Regression from Raw

Materials 500

15.2.1 A Graphical View of Linear
Regression 504

Building Logistic Regression from Raw

Materials 504

15.3.1 Logistic Regression with
Zero-One Coding 506

15.3.2 Logistic Regression with
Plus-One Minus-One
Coding 508

15.3.3 A Graphical View of Logistic
Regression 509

SVM from Raw Materials 510
Neural Networks 512
15.5.1 A NN View of Linear
Regression 512
15.5.2 A NN View of Logistic
Regression 515
15.5.3 Beyond Basic Neural
Networks 516
Probabilistic Graphical Models 516
15.6.1 Sampling 518
15.6.2 A PGM View of Linear
Regression 519

This page intentionally left blank

Foreword

Whether it is called statistics, data science, machine learning, or artificial intelligence,
learning patterns from data is transforming the world. Nearly every industry imaginable
has been touched (or soon will be) by machine learning. The combined progress of both
hardware and software improvements are driving rapid advancements in the field, though it
is upon software that most people focus their attention.

While many languages are used for machine learning, including R, C/C++, Fortran,
and Go, Python has proven remarkably popular. This is in large part thanks to scikit-learn,
which makes it easy to not only train a host of different models but to also engineer
features, evaluate the model quality, and score new data. The scikit-learn project has
quickly become one of Python’s most important and powerful software libraries.

While advanced mathematical concepts underpin machine learning, it is entirely
possible to train complex models without a thorough background in calculus and matrix
algebra. For many people, getting into machine learning through programming, rather
than math, is a more attainable goal. That is precisely the goal of this book: to use Python
as a hook into machine learning and then add in some math as needed. Following in the
footsteps of R for Everyone and Pandas for Everyone, Machine Learning with Python for Everyone
strives to be open and accessible to anyone looking to learn about this exciting area of
math and computation.

Mark Fenner has spent years practicing the communication of science and machine
learning concepts to people of varying backgrounds, honing his ability to break down
complex ideas into simple components. That experience results in a form of storytelling
that explains concepts while minimizing jargon and providing concrete examples. The
book is easy to read, with many code samples so the reader can follow along on their
computer.

With more people than ever eager to understand and implement machine learning, it is
essential to have practical resources to guide them, both quickly and thoughtfully. Mark
fills that need with this insightful and engaging text. Machine Learning with Python for
Everyone lives up to its name, allowing people with all manner of previous training to
quickly improve their machine learning knowledge and skills, greatly increasing access to
this important field.

Jared Lander,
Series Editor

This page intentionally left blank

Preface

In 1983, the movie WarGames came out. I was a preteen and I was absolutely engrossed:
by the possibility of a nuclear apocalypse, by the almost magical way the lead character
interacted with computer systems, but mostly by the potential of machines that could learn.
I spent years studying the strategic nuclear arsenals of the East and the West—fortunately
with a naivete of a tweener—but it was almost ten years before I took my first serious
steps in computer programming. Teaching a computer to do a set process was amazing.
Learning the intricacies of complex systems and bending them around my curiosity was a
great experience. Still, I had a large step forward to take. A few short years later, I worked
with my first program that was explicitly designed to learn. I was blown away and I knew
I found my intellectual home. I want to share the world of computer programs that learn
with you.

Audience

Who do I think you are? I've written Machine Learning with Python for Everyone for the
absolute beginner to machine learning. Even more so, you may well have very little
college-level mathematics in your toolbox and I'm not going to try to change that. While
many machine learning books are very heavy on mathematical concepts and equations,
I've done my best to minimize the amount of mathematical luggage you’ll have to carry. I
do expect, given the book’s title, that you’ll have some basic proficiency in Python. If you
can read Python, you’ll be able to get a lot more out of our discussions. While many books
on machine learning rely on mathematics, I'm relying on stories, pictures, and Python
code to communicate with you. There will be the occasional equation. Largely, these can
be skipped if you are so inclined. But, if I've done my job well, I'll have given you enough
context around the equation to maybe—just maybe—understand what it is trying to say.

Why might you have this book in your hand? The least common denominator is that
all of my readers want to learn about machine learning. Now, you might be coming from
very different backgrounds: a student in an introductory computing class focused on
machine learning, a mid-career business analyst who all of sudden has been thrust beyond
the limits of spreadsheet analysis, a tech hobbyist looking to expand her interests, or a
scientist needing to analyze data in a new way. Machine learning is permeating society.
Depending on your background, Machine Learning with Python for Everyone has different
things to offer you. Even a mathematically sophisticated reader who is looking to do a
break-in to machine learning using Python can get a lot out of this book.

So, my goal is to take someone with an interest or need to do some machine learning
and teach them the process and the most important concepts of machine learning in a
concrete way using the Python scikit-learn library and some of its friends. You’ll come

XXiv

Preface

away with overall patterns, strategies, pitfalls, and gotchas that will be applicable in every
learning system you ever study, build, or use.

Approach

Many books that try to explain mathematical topics, such as machine learning, do so by
presenting equations as if they tell a story to the uninitiated. I think that leaves many of
us—even those of us who like mathematics!—stuck. Personally, I build a far better mental
picture of the process of machine learning by combining visual and verbal descriptions
with running code. 'm a computer scientist at heart and by training. I love building things.
Building things is how I know that I've reached a level where I really understand them.
You might be familiar with the phrase, “If you really want to know something, teach it to
someone.” Well, there’s a follow-on. “If you really want to know something, teach a
computer to do it!” That’s my take on how I'm going to teach you machine learning.
With minimal mathematics, I want to give you the concepts behind the most important
and frequently used machine learning tools and techniques. Then, I want you to
immediately see how to make a computer do it. One note: we won't be programming
these methods from scratch. We’'ll be standing on the shoulders of giants and using some
very powerful, time-saving, prebuilt software libraries (more on that shortly).

We won'’t be covering all of these libraries in great detail—there is simply too much
material to do that. Instead, we are going to be practical. We are going to use the best tool
for the job. I'll explain enough to orient you in the concept we’re using—and then we’ll
get to using it. For our mathematically inclined colleagues, I'll give pointers to more
in-depth references they can pursue. I'll save most of this for end-of-the-chapter notes so
the rest of us can skip it easily.

If you are flipping through this introduction, deciding if you want to invest time in this
book, I want to give you some insight into things that are out-of-scope for us. We aren’t
going to dive into mathematical proofs or rely on mathematics to explain things. There are
many books out there that follow that path and I'll give pointers to my favorites at the ends
of the chapters. Likewise, I'm going to assume that you are fluent in basic- to intermediate-
level Python programming. However, for more advanced Python topics—and things that
show up from third-party packages like NumPy or Pandas—TI'll explain enough of what’s
going on so that you can understand each technique and its context.

Overview

In Part I, we establish a foundation. I'll give you some verbal and conceptual
introductions to machine learning in Chapter 1. In Chapter 2 we introduce and take a
slightly different approach to some mathematical and computational topics that show up
repeatedly in machine learning. Chapters 3 and 4 walk you through your first steps in
building, training, and evaluating learning systems that classify examples (classifiers) and
quantify examples (regressors).

Part II shifts our focus to the most important aspect of applied machine learning
systems: evaluating the success of our system in a realistic way. Chapter 5 talks about general

Preface

evaluation techniques that will apply to all of our learning systems. Chapters 6 and 7 take
those general techniques and add evaluation capabilities for classifiers and regressors.

Part III broadens our toolbox of learning techniques and fills out the components of a
practical learning system. Chapters 8 and 9 give us additional classification and regression
techniques. Chapter 10 describes feature engineering: how we smooth the edges of rough
data into forms that we can use for learning. Chapter 11 shows how to chain multiple steps
together as a single learner and how to tune a learner’s inner workings for better
performance.

Part IV takes us beyond the basics and discusses more recent techniques that are
driving machine learning forward. We look at learners that are made up of multiple little
learners in Chapter 12. Chapter 13 discusses learning techniques that incorporate
automated feature engineering. Chapter 14 is a wonderful capstone because it takes the
techniques we describe throughout the book and applies them to two particularly
interesting types of data: images and text. Chapter 15 both reviews many of the techniques
we discuss and shows how they relate to more advanced learning architectures—neural
networks and graphical models.

Our main focus is on the techniques of machine learning. We will investigate a number
of learning algorithms and other processing methods along the way. However,
completeness is not our goal. We’ll discuss the most common techniques and only glance
briefly at the two large subareas of machine learning: graphical models and neural, or deep,
networks. However, we will see how the techniques we focus on relate to these more
advanced methods.

Another topic we won'’t cover is implementing specific learning algorithms. We’ll build
on top of the algorithms that are already available in scikit-learn and friends; we’ll create
larger solutions using them as components. Still, someone has to implement the gears and
cogs inside the black-box we funnel data into. If you are really interested in implementation
aspects, you are in good company: I love them! Have all your friends buy a copy of this
book, so I can argue I need to write a follow-up that dives into these lower-level details.

Acknowledgments

I must take a few moments to thank several people that have contributed greatly to this
book. My editor at Pearson, Debra Williams Cauley, has been instrumental in every phase
of this book’s development. From our initial meetings, to her probing for a topic that
might meet both our needs, to gently shepherding me through many (many!) early drafts,
to constantly giving me just enough of a push to keep going, and finally climbing the
steepest parts of the mountain at its peak . . . through all of these phases, Debra has shown
the highest degrees of professionalism. I can only respond with a heartfelt thank you.

My wife, Dr. Barbara Fenner, also deserves more praise and thanks than I can give her
in this short space. In addition to the burdens that any partner of an author must bear, she
also served as my primary draft reader and our intrepid illustrator. She did the hard work of
drafting all of the non-computer-generated diagrams in this book. While this is not our
first joint academic project, it has been turned into the longest. Her patience is, by all
appearances, never ending. Barbara, I thank you!

XXVi Preface

My primary technical reader was Marilyn Roth. Marilyn was unfailingly positive
towards even my most egregious errors. Machine Learning with Python for Everyone is
immeasurably better for her input. Thank you.

I would also like to thank several members of Pearson’s editorial staff: Alina Kirsanova
and Dmitry Kirsanov, Julie Nahil, and many other behind-the-scenes folks that I didn’t
have the pleasure of meeting. This book would not exist without you and your
hardworking professionalism. Thank you.

Publisher’s Note

The text contains unavoidable references to color in figures. To assist readers of the print
edition, color PDFs of figures are available for download at http://informit.com/title
/9780134845623.

For formatting purposes, decimal values in many tables have been manually rounded to
two place values. In several instances, Python code and comments have been slightly
modified—all such modifications should result in valid programs.

Online resources for this book are available at https://github.com/mfenner1.

Register your copy of Machine Learning with Python for Everyone on the InformlIT site for
convenient access to updates and/or corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134845623) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

http://informit.com/title/9780134845623
http://informit.com/title/9780134845623
https://github.com/mfenner1
http://informit.com/register

About the Author

Mark Fenner, PhD, has been teaching computing and mathematics to adult
audiences—from first-year college students to grizzled veterans of industry—since 1999.
In that time, he has also done research in machine learning, bioinformatics, and computer
security. His projects have addressed design, implementation, and performance of machine
learning and numerical algorithms; security analysis of software repositories; learning
systems for user anomaly detection; probabilistic modeling of protein function; and analysis
and visualization of ecological and microscopy data. He has a deep love of computing and
mathematics, history, and adventure sports. When he is not actively engaged in writing,
teaching, or coding, he can be found launching himself, with abandon, through the woods
on his mountain bike or sipping a post-ride beer at a swimming hole. Mark holds a nidan
rank in judo and is a certified Wilderness First Responder. He and his wife are graduates
of Allegheny College and the University of Pittsburgh. Mark holds a PhD in computer
science. He lives in northeastern Pennsylvania with his family and works through his
company, Fenner Training and Consulting, LLC.

This page intentionally left blank

Chapter 1
Chapter 2
Chapter 3

Chapter 4

Part |

First Steps

Let’s Discuss Learning

Some Technical Background

Predicting Categories: Getting
Started with Classification

Predicting Numerical Values:
Getting Started with Regression

This page intentionally left blank

1

Let’s Discuss Learning

1.1 Welcome

From time to time, people trot out a tired claim that computers can “only do what they
are told to do.” The claim is taken to mean that computers can only do what their
programmers know how to do and can explain to the computer. This claim is false.
Computers can perform tasks that their programmers cannot explain to them. Computers
can solve tasks that their programmers do not understand. We will break down this
paradox with an example of a computer program that learns.

I’ll start by discussing one of the oldest—if not the oldest known—examples of a
programmed machine-learning system. I've turned this into a story, but it is rooted in
historical facts. Arthur Samuel was working for IBM in the 1950s and he had an interesting
problem. He had to test the big computing machines that were coming off the assembly
line to make sure transistors didn’t blow up when you turned a machine on and ran a
program— people don’t like smoke in their workplace. Now, Samuel quickly got bored
with running simple toy programs and, like many computing enthusiasts, he turned his
attention towards games. He built a computer program that let him play checkers against
himself. That was fun for a while: he tested IBM’s computers by playing checkers. But, as
is often the case, he got bored playing two-person games solo. His mind began to consider
the possibility of getting a good game of checkers against a computer opponent. Problem was,
he wasn’t good enough at checkers to explain good checkers strategies to a computer!

Samuel came up with the idea of having the computer learn how to play checkers. He
set up scenarios where the computer could make moves and evaluate the costs and benefits
of those moves. At first, the computer was bad, very bad. But eventually, the program
started making progress. It was slow going. Suddenly, Samuel had a great two-for-one idea:
he decided to let one computer play another and take himself out of the loop. Because the
computers could make moves much faster than Samuel could enter his moves—Iet alone
think about them—the result was many more cycles of “make a move and evaluate the
outcome” per minute and hour and day.

Here is the amazing part. It didn’t take very long for the computer opponent to be
able to consistently beat Samuel. The computer became a better checkers player than its
programmer! How on earth could this happen, if “computers can only do what they are told
to do”? The answer to this riddle comes when we analyze what the computer was told to

Chapter 1 Let's Discuss Learning

do. What Samuel told the computer to do was not the play-checkers task; it was the
learn-to-play-checkers task. Yes, we just went all meta on you. Meta is what happens when
you take a picture of someone taking a picture (of someone else). Meta is what happens
when a sentence refers to itself; the next sentence is an example. This sentence has five
words. When we access the meta level, we step outside the box we were playing in and we
get an entirely new perspective on the world. Learning to play checkers—a task that develops
skill at another task—is a meta task. It lets us move beyond a limiting interpretation of’
the statement, computers can only do what they are told. Computers do what they are told, but
they can be told to develop a capability. Computers can be told to learn.

1.2 Scope, Terminology, Prediction,
and Data

There are many kinds of computational learning systems out there. The academic field
that studies these systems is called machine learning. Our journey will focus on the current
wunderkind of learning systems that has risen to great prominence: learning from examples.
Even more specifically, we will mostly be concerned with supervised learning from examples.
What is that? Here’s an example. I start by giving you several photos of two animals you’ve
never seen before—with apologies to Dr. Seuss, they might be a Lorax or a Who—and
then I tell you which animal is in which photo. If I give you a new, unseen photo you
might be able to tell me the type of animal in it. Congratulations, you’re doing great! You
just performed supervised learning from examples. When a computer is coaxed to learn
from examples, the examples are presented a certain way. Each example is measured
on a common group of attributes and we record the values for each attribute on each
example. Huh?

Imagine—or glance at Figure 1.1—a cartoon character running around with a
basket of different measuring sticks which, when held up to an object, return some
characteristic of that object, such as this vehicle has four wheels, this person has brown hair, the
temperature of that tea is 180°F, and so on ad nauseam (that’s an archaic way of saying until
you’re sick of my examples).

N S el

Figure 1.1 Humans have an insatiable desire to measure all sorts of things.

Scope, Terminology, Prediction, and Data

1.2.1 Features

Let’s get a bit more concrete. For example—a meta-example, if you will—a dataset
focused on human medical records might record several relevant values for each patient,
such as height, weight, sex, age, smoking history, systolic and diastolic (that’s the high and
low numbers) blood pressures, and resting heart rate. The different people represented in
the dataset are our examples. The biometric and demographic characteristics are our
attributes.

We can capture this data very conveniently as in Table 1.1.

Table 1.1 Asimple biomedical data table. Each row is an example. Each column
contains values for a given attribute. Together, each attribute-value pair is a feature of an
example.

patientid height weight sex age smoker hr sysbp diabp

007 52" 120 M 11 no 75 120 80
2139 5'4” 140 F 41 no 65 115 75
1111 511" 185 M 41 no 52 125 75

Notice that each example—each row—is measured on the same attributes shown in
the header row. The values of each attribute run down the respective columns.

We call the rows of the table the examples of the dataset and we refer to the columns as
the features. Features are the measurements or values of our attributes. Often, people use
“features” and “attributes” as synonyms describing the same thing; what they are referring
to are the column of values. Still, some people like to distinguish among three concepts:
what-is-measured, what-the-value-is, and what-the-measured-value-is. For those strict folks, the
first is an attribute, the second is a value, and the last is a feature—an attribute and a value
paired together. Again, we’ll mostly follow the typical conversational usage and call the
columns features. If we are specifically talking about what-is-measured, we’ll stick with the
term attribute. You will inevitably see both, used both ways, when you read about machine
learning.

Let’s take a moment and look at the types of values our attributes—what is
measured—-can take. One type of value distinguishes between different groups of people.
‘We might see such groups in a census or an epidemiological medical study—for
example, sex {male, female} or a broad record of ethnic-cultural-genetic heritage
{ Aftican, Asian, European, Native American, Polynesian}. Attributes like these are called
discrete, symbolic, categorical, or nominal attributes, but we are not going to stress about
those names. If you struggled with those in a social science class, you are free to give a
hearty huzzah.

Here are two important, or at least practical, points about categorical data. One point
is that these values are discrete. They take a small, limited number of possibilities that
typically represent one of several options. You're right that small and several are relative
terms—just go with it. The second point is that the information in those attributes can be
recorded in two distinct ways:

6

Chapter 1 Let's Discuss Learning

m As asingle feature that takes one value for each option, or
m As several features, one per option, where one, and only one, of those features is
marked as yes or true and the remainder are marked as no or false.

Here’s an example. Consider

Name Sex

Mark Male
Barb Female
Ethan Male

versus:

Name Sexis Female Sexis Male

Mark No Yes
Barb Yes No
Ethan No Yes

If we had a column for community type in a census, the values might be Urban, Rural,
and Suburban with three possible values. If we had the expanded, multicolumn form, it
would take up three columns. Generally, we aren’t motivated or worried about table size
here. What matters is that some learning methods are, shall we say, particular in preferring
one form or the other. There are other details to point out, but we’ll save them for later.

Some feature values can be recorded and operated on as numbers. We may lump them
together under the term numerical features. In other contexts, they are known as continuous
or, depending on other details, interval or ratio values. Values for attributes like height and
weight are typically recorded as decimal numbers. Values for attributes like age and blood
pressure are often recorded as whole numbers. Values like counts—say, how many wheels
are on a vehicle—are strictly whole numbers. Conveniently, we can perform arithmetic
(+, —, X, /) on these. While we can record categorical data as numbers, we can’t
necessarily perform meaningful numerical calculations directly on those values. If two
states—say, Pennsylvania and Vermont—are coded as 2 and 14, it probably makes no
sense to perform arithmetic on those values. There is an exception: if, by design, those
values mean something beyond a unique identifier, we might be able to do some or all of
the maths. For extra credit, you can find some meaning in the state values I used where
mathematics would make sense.

1.2.2 Target Values and Predictions

Let’s shift our focus back to the list of biomedical attributes we gathered. As a reminder,
the column headings were height, weight, sex, age, smoker, heart rate, systolic blood
pressure, and diastolic blood pressure. These attributes might be useful data for a health
care provider trying to assess the likelihood of a patient developing cardiovascular heart. To
do so, we would need another piece of information: did these folks develop heart disease?

Putting the Machine in Machine Learning

If we have that information, we can add it to the list of attributes. We could capture and
record the idea of “developing heart disease” in several different ways. Did the patient:

® Develop any heart disease within ten years: yes/no

m Develop X-level severity heart disease within ten years: None or Grade I, II, III

m Show some level of a specific indicator for heart disease within ten years: percent of
coronary artery blockage

We could tinker with these questions based on resources at our disposal, medically
relevant knowledge, and the medical or scientific puzzles we want to solve. Time is a
precious resource; we might not have ten years to wait for an outcome. There might be
medical knowledge about what percent of blockage is a critical amount. We could modify
the time horizon or come up with different attributes to record.

In any case, we can pick a concrete, measurable target and ask, “Can we find a
predictive relationship between the attributes we have foday and the outcome that we will
see at some future time?” We are literally trying to predict the future—maybe ten years from
now—rfrom things we know today. We call the concrete outcome our farget feature or
simply our farget. If our target is a category like {sick, healthy} or {None, I, II, III}, we call
the process of learning the relationship classification. Here, we are using the term
classification in the sense of finding the different classes, or categories, of a possible
outcome. If the target is a smooth sweeping of numerical values, like the usual decimal
numbers from elementary school {27.2,42.0,3.14159, —117.6}, we call the process
regression. 1f you want to know why, go and google Galton regression for the history lesson.

We now have some handy terminology in our toolbox: most importantly features, both
either categorical or numerical, and a target. If we want to emphasize the features being used
to predict the future unknown outcome, we may call them input features or predictive
features. There are a few issues I've swept under the carpet. In particular, we’ll address some
alternative terminology at the end of the chapter.

1.3 Putting the Machine in Machine
Learning

I want you to create a mental image of a factory machine. If you need help, glance at
Figure 1.2. On the left-hand side, there is a conveyor belt that feeds inputs into the
machine. On the right-hand side, the machine spits out outputs which are words or
numbers. The words might be cat or dog. The numbers might be {0, 1} or {—2.1,3.7}.
The machine itself is a big hulking box of metal. We can’t really see what happens on the
inside. But we can see a control panel on the side of the machine, with an operator’s seat in
front of it. The control panel has some knobs we can set to numerical values and some
switches we can flip on and off. By adjusting the knobs and switches, we can make
different products appear on the right-hand side of the machine, depending on what came
in the left-hand side. Lastly, there is a small side tray beside the operator’s chair. The tray
can be used to feed additional information, that is not easily captured by knobs and
switches, into the machine. Two quick notes for the skeptical reader: our knobs can get us

Chapter 1 Let's Discuss Learning

furry
purrs furry
barks

000 et dog

Figure 1.2 Descriptions go in. Categories or other values come out. We can adjust
the machine to improve the relationship between the inputs and outputs.

arbitrarily small and large values (—o0 to 00, if you insist) and we don'’t strictly need on/off
switches, since knobs set to precisely 0 or 1 could serve a similar purpose.

Moving forward, this factory image is a great entry point to understand how learning
algorithms figure out relationships between features and a target. We can sit down as the
machine operator and press a magic—probably green—go button. Materials roll in
the machine from the left and something pops out on the right. Our curiosity gets the best
of us and we twiddle the dials and flip the switches. Then, different things pop out the
right-hand side. We turn up KnobOne and the machine pays more attention to the sounds
that the input object makes. We turn down KnobTwo and the machine pays less attention
to the number of limbs on the input object. If we have a goal—if there is some known
product we’d like to see the machine produce—hopefully our knob twiddling gets us
closer to it.

Learning algorithms are formal rules for how we manipulate our controls. After seeing
examples where the target is known, learning algorithms take a given big-black-box and
use a well-defined method to set the dials and switches to good values. While good can be
quite a debatable quality in an ethics class, here we have a gold standard: our known target
values. If they don’t match, we have a problem. The algorithm adjusts the control panel
settings so our predicted outs match the known outs. Our name for the machine is a learning
model or just a model.

An example goes into the machine and, based on the settings of the knobs and
switches, a class or a numerical value pops out. Do you want a different output value from
the same input ingredients? Turn the knobs to different settings or flip a switch. One
machine has a fixed set of knobs and switches. The knobs can be turned, but we can’t add
new knobs. If we add a knob, we have a different machine. Amazingly, the differences
between knob-based learning methods boil down to answering three questions:

1. What knobs and switches are there: what is on the control panel?
2. How do the knobs and switches interact with an input example: what are the inner
workings of the machine?

Examples of Learning Systems

3. How do we set the knobs from some known data: how do we align the inputs with
the outputs we want to see?

Many learning models that we will discuss can be described as machines with knobs
and switches—with no need for the additional side input tray. Other methods require the
side tray. We’ll hold off discussing that more thoroughly, but if your curiosity is getting
the best of you, flip to the discussion of nearest neighbors in Section 3.5.

Each learning method—which we imagine as a black-box factory machine and a way
to set knobs on that machine—is really an implementation of an algorithm. For our purposes,
an algorithm is a finite, well-defined sequence of steps to solve a task. An implementation
of an algorithm is the specification of those steps in a particular programming language.
The algorithm is the abstract idea; the implementation is the concrete existence of that
idea—at least, as concrete as a computer program can be! In reality, algorithms can also be
implemented in hardware—just like our factory machines; it’s far easier for us to work
with software.

1.4 Examples of Learning Systems

Under the umbrella of supervised learning from examples, there is a major distinction
between two things: predicting values and predicting categories. Are we trying (1) to relate
the inputs to one of a few possible categories indicated by discrete symbols, or (2) to

relate the inputs to a more-or-less continuous range of numerical values? In short, is the
target categorical or numerical? As I mentioned, predicting a category is called classification.
Predicting a numerical value is called regression. Let’s explore examples of each.

1.4.1 Predicting Categories: Examples of Classifiers

Classifiers are models that take input examples and produce an output that is one of a small
number of possible groups or classes:

1. Image Classification. From an input image, output the animal (e.g., cat, dog,
zebra) that is in the image, or none if there is no animal present. Image analysis of
this sort 1s at the intersection of machine learning and computer vision. Here, our
inputs will be a large collection of image files. They might be in different formats
(png, jpeg, etc.). There may be substantial differences between the images: (1) they
might be at different scales, (2) the animals may be centered or cut-off on the edges
of the frame, and (3) the animals might be blocked by other things (e.g., a tree).
These all represent challenges for a learning system—and for learning researchers!
But, there are some nice aspects to image recognition. Our concept of cat and what
images constitute a cat is fairly fixed. Yes, there could be blurred boundaries with
animated cats—Hobbes, Garfield, Heathcliff, I'm looking at you—nbut short of
evolutionary time scales, cat is a pretty static concept. We don’t have a moving target:
the relationship between the images and our concept of cat is fixed over time.

